
AD-A234 793 IL)

RADC-TR-90-24
Fiial Tchicdal Report
Decemlber19904

ENGINEERING FOR ARTIFICIAL
INTELLIGENCE SOFTWARE

SRI.International

John Rus hby, Mark E. Stickel, Richard-J. Waldinger

DTIC
APR t161991fl

C
APPROVED FOR AULC ALEASE, V/S TRISUT/ON IULMED

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

91 4 150o92

This ireport has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the National Technical Informatin SerVices (NTIS). At
NTIS it iA1 be releasable to the general public, including foreign nations.

RADC-TR;9O-424 has been reviewed and is approved for p ubiicationt.

APPROVED: 4' wZ'
MARK L. FAUSETT
Project Engineer

APPROVED: ~i?1i--

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER:

RONALD S. RAPOSO
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your
organization, please notify RADC (COES) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE7 0oMB No. 004-0 88
PLt~~bacin a 1 I~de ake his fommp I h cesporte"XmO Wn UtgA3c1w r Lb ud
wkg tkigommui twdo*f d~ Im ftse1dmn aft _;6 b.:, o~gtishoe oy atmr opd dui

Dowl &*way ft104 A**=VA~a w=4 dta olie ft Md rotord OdKPpwa a Prc OECMM9. Wft DC2MM__
1. AGENCY USE ONLY OweV 8ia04) 2. REP0TDATE 3.REPORT TYPE AND DATES COVERED

December 1990, Final Mar 89 7 Jufn 90
4. Tam1. AND sIJBaflE 5. RUN)I NUMBERS
ENGIN-EERING FOR ARTIFICIAL INTELLIGENCE SOFTWARE Cd F30602-87-D-0094

PE ' 62702F
- - PR5581

a AUTHOR(S)
TA - QC

John Rushby, Mark E. Stickel, Richard J-. Waldinger 'Wt - 05

7. PERFORMING ORGANLZAllON NAME(S) AND ADDRESS(ES) &PERFORMING ORGANIZATION

333 Ravenswood Ave
-Menlo Park CA 94025

I iii. 6F. Vie.WORINGAGENCY. NAME(S AND ADDRESS(ES) IQ1 SPONSOPJNGA40OFUORNG
Rome Air Development Center (COES- AG1ENCY REPORT NUMBER,
Griffiss AFB NY 13441-5700)RADC-TR-90-424

11. SUPPLEMENTARY NOTES
RADC Project Engineer: Mark L. Fausett, Capt, USAF/COES/(315) 330-7944

__(Continued)

12.. DITRIUTIOIUAVALABIU1Y STATEMENT. 12. DSTRIBUTION CODE
Approved for public release; distribution unlimited.

1M AB$1RACT"INM0nwd
Rule-based systems are being applied to tasks of increasing responsibility. This repor
focuses on techniques for the verification and validation of these systems. Conventiona
software-quality assurance depends on the availability of requirements and specificatio
documents. For rule systems, there are generally none because the capabilities of thesl
systems evolve through a development process that is partly experimental in nature.
Conventional testing techniques are considered; however, such techniques do not carry
over absence of errors. Methods for proving the consistency of rule systems are
examined. These methods require that the rules be viewed declaratively, which may be
too much of a simplification. A semantics for rule systems based on term rewriting is
developed. Standard tests for conf luence of term rewriting systems cannot be converted
to rule systems, however, because the firing of rules can depend on the absence, as
well as the presence, of elements in working memory.

Finally, we consider deductive methods for the validation of rule systems. The system
of rules, the operation of the language, and information about the subject domain are
represented in a system theory. Validation tasks such as proving termination or verify-
ing properties of the system are phrased as conjectures within the theory. If the con-
jecture can be proved, the corresponding validation task has been completed.

____ ___ ___ ___ ___ ____ ___ ___ ___ ___ ____ ___ ___ ___ ___ ___(Continued)

14. SUBJECT TERMS 11 NLNER OF PAMS
Rule-based systems, Verification, Validation, Testing, 6~8
Semantics15PIECD

17. SECUFITY "tSFA1ON 1IL. SECUff1Y CL*"CA"ONis SECUVI CIASSFICATION =0 UMION Of ABSTRACT
OWRPOR OF THIS PAGE I FAB$TRACTI

UNCLASSIFIED UNCLASSIFIED I UNCLASSIFIED LSAR
Pru..ftdd r 24

P soce bV A
2MI02n

Block 11 (Continued)

Prepared by SRI under subcontract to iIT Research Institute, Route 26N.,
Beeches Technical Campus, Rome NY 13440-2069

Block 13; (Continued)

A method 'for the -gradual formulation of specifications based on the attempted.
proof of a series of conjectures has been found to be suitable to an &volving
xule system. Success on the approach is limited by the power of existing
theorem-proving systems. A system SNARK, which is being developed and appiied
to the proof of Validation conjectures for rule systems, is described.

FOREWORD

This is the Final Technical Report, Revision A, CDRL No. G003, for Task 7 under 2
contract F30602-87-D-0094. This contract is withiT Research Institute (IITRI) and is
sponsored by the Rome Air Development Center. The work was performed by SRI
International under subcontract R009406 with 1TRI providing management support.

ISETED

4S)

T3.s 'NA

- n j

Av6t.'' ~2
0 Z

Spc9t S

Contents

1 Introduction

2 Testing of Rule-Based Systems 5
2.1 Functional'Testing 5

2.1.1 Revealing Subdomains 6
2.1.2 Random Generation of Test Data 8
2.1.3 A Synthesis 8

2.2 Structural Testing 8
2.2.1 A Definition of Execution Path for Rule-Based Software 9

2.2.1.1 Proposals Extant in the AI Literature 9
2.2.1.2 . An Alternative Proposal 12

2.2;2 Path Criteria for Rule-Based Software14

3 Proving Consistency of Rule-Based Systems 16

4 Term-Rewriting Semantics for Rule-Based Systems 20
4.1 Elements of OPS5 21

4.1.1 Working Memory 22
4.1.2 Production Memory 22
4.1.3 Recognize-Act Cycle 23
4.1.4 Conflict Resolution Strategy 23

4.2 Term Rewriting Systems 24
4.3 A Rewriting Interpretation of OPS5 26
4.4 Analysis 28

5 Proving Properties of Rule-Based Systems 30
5.1 Introduction 30

5.1.1 Validation Tasks 32
5.1.2 The System Theory 33

Con tents-

.5;13' Related Work. 33
5.1.4 Outline of this Chapter 33

5.2 Rule-BasedSystems. 34
5.2.1 The Rule Language 34
5 2-2 Rule Application ;........... 34
5.3 Explicit Halting... 36
5.2.4 -Conflict Resolution. Strategy 3

5.3 The System Theory 3
5.3.1 Histories 40
5.3.2 Finite* Sets~and Unique.Names. 41
5.1~3 Well-Founded'Induction.. 42

5.4 Validation Conjectures.... 43
&5.5 Example: The Billing Category.-System 46

6.5Aj The Rule Axioms 46
5.5.2 Conjectures: A Scenario. 47

5.6 The SNARK System 50
5.7 Summary and Plants. 52

Chapter 1
*introduction

SRI International (SRI),is pleased to present this Final Report, Engineering
for Artificial Intelligence Software, to Rome Air Development Center, in
fulfillment of Contract F30602-87-0-0094. The report describes research
on software engineering issues in artificial intelligence (knOwledge-based)
software.

Our specific focus is on techniques for verification and validation, which
are important comppnents of methodologies for conventional software qual-
ity assurance. Verification is'the process of determining whether each level
of specification, and the final code itself, fully and exclusively implements
the requirements of its superior specification. That-is, all specifications and
code must be traceable to a superior specification. Validation is the process
by which delivered code is directly shown to satisfy the original user require-
ments. Verification is usually a manual process that examines descriptions of
the software, while validation depends on testing, the software in execution.
The two processes are complementary: each is effective at detecting errors
that the other will miss, and they are therefore usually employed together.

Verification and validation depend on the availability of requirements
and specification documents-at least to the extent that it is possible to
determine whether a program has experienced a failure. The problem with
requirements and specifications for AI software is that generally there are
none. The absence of precise requirements and specification documents for
much Al software reflects the genuine difficulty in stating i. priori the expec-
tations and requirements for a system whose capabilities will evolve through
a development process that is partly experimental in nature.

Cihapter 1 Jitroduction

With conventional, sequentialprogramming.langUages, the behavi6r of a
-pf6graiin execution lias tradit inally-been understood-in-terms ofthe step,
by-step executio- of its components. More modern treatments strive for a
declarative semantics, in which -the properties of a pfogram can be deduced,
Iy conventional, iiatheimatical reasoning, without.-recoirse to a model of
-procedural-execution. Certain programming languages based on logic (for

- example, ~OBJ [14] or, in a compromised form, Prolog [7]) possess such,
declarative semantics.

Al systems are often written with rule-based systems-like OPS5 [10,3]
Or CLIPS [11], Which pose extrachallienges for .verification antd-validation as
compared to conventional programining languages.

Rule-based systems aie based on production rules that. ict:on-assertiohs
in ,Working memory. ' The rules in such a system-are often described as a
"knoWledge-base," rather than as a program, -suggesting that- they. can -be
understood declartively---that is without considering interactions among
the iules, or the order in Which they execute. This is-an-idealized view;in
practice, it is necessary to consider- interactions among rules and the order

of execution. Execution order is determihed by the, "co nfi t resolution"
strategy of the rule interpreter concerned. (The "instantiations" of rules
that are eligible to execute ("fire") in a given cycle form the "conflict set";
the conflict resolution strategy selects one ofthe rules in'this set-for firing.)
Conflict resolution. strategies in ,practical rule-based systems can be quite
complex.

Because conflict resolution strategieshave such a profound effect on the
behavior of rule-based systems, it is important to explore the extent to
which it is possible to accurately model the behavior of these systems in
the presence of realistic conflict resolution strategies. It is also important to
explore whether it is possible to make statements about the behavior of a
rule-based system that will be true for any conflict resolution strategy.

In the remainder of this chapter, we give an outline of the report. Chap-
ter 2 discusses issues of testing rule-based systems. Functional or "black-
box" testing determines whether a system produces correct results when
presented with sample inputs. The concept of "revealing subdomains" for
testing only representative elements of equivalence classes of inputs and ran-
dom generation of test data are key to effective functional testing.

Structural or "white-box" testing identifies execution paths through a
program and constructs a set of sample inputs that will cause each path to
be executed. The construction of test data on the basis of the structure of
the program is likely to yield a more complete test than purely functional

2

-Chapter i. itk'odutct ibli

testing. Iowevr-.the notion of execution path is not as well defined for rule-
'based systems as itis for conventional programming languages. Thecontent
of w orking mneinory,-rather than a progtam counter, determines which rule to
fire next, Criteria and approaches, for defining execution paths rule-based
systems- are exainined,

Testing is often an economical inethod-6f finding errors in a system and
validating that it-satisfies-the user's expectations. HIoweveri.testing is inher-
ently limited: it can demonstrate the presence.of errors, but (usually) can-
not conclusively demonstratethe absence of errors. The remaining chapters
progressively-develop concepts and methodsdesigned toprvide greater as-
surance of the correctness of rule-based-system§i-by proving instead of testing
propeties.

Chapter 3 considers the specific problem of-"consistency" in some simple,
propositional ,uie-based systems. A rule-base with a consistency property
may give differettt answers under different execution, orders, but it will niot
give "contradictory" answers. We describe a special-purpose algorithm- for
-testing this notion of consistencyfor propositional rule-bases with or without
negative condition-elements.

Chapter 4 presents a term-rewriting-system semantics for rule-based sys-
tems. The first-order formalism models systems much more capable than
propositional rule-based systems-and is realistic for OPS5-like systems. Each
production rule is regarded as a rewrite rule in a term rewriting system. Fir-
ing a rule dorresponds to rewriting a term that represents the contents of
working memory.

Modeling rule-based systems as term-rewriting systems allows consider-
ation of widely studied properties of these systems, including the Church-
Rosser property, which establishes that the outcome of a computation is
independent of the order in which individual steps are executed. A rule-
base with the Church-Rosser property will always produce the same final
result no matter whi.ch eligible rule is selected for firing at each step. Such
a rule-base would work the same under any conflict resolution strategy. A
more interesting question is whether a rule base has a partial Church-Rosser
property in the presence of certain conflict resolution strategies. Unfortu-
nately, it is shown that even such a simple conflict resolution strategy as
a specificity rule defeats the usual test for the Church-Rosser property, as
does the presence of negative condition elements.

Chapter 5 describes our most recent work, which applies very general
deductive methods to a variety of verification and validation tasks for rule-
based systems. As in Chapter 4, rules are formalized as operations that

3

ChApter 1. hiti-oducioi

rewrite the contenits -of wvorking memory. Typical tasks include showving.
that-a;.system will satisfy- agivenjrequirement, findiiig conditionls in. which a
Jpartlcular filure wi~ll occuri or, establishing that a ti le wvill never -be able to
fre For each rule systen-we construct a corresponding'"systemn theory" and-

each validation task is carried-out by proving that a corresponding conjecture
is valid-in the system. theory. Validation conjectures for sample systems-haVe
-been proved -by SNARK anew Ilheore-ii-proving system. 'Proving a-series of
validation conjectures tan help- us formulate a specificition for the. system.
Tis approach is thie-most gefieral and- powverful of- those wve have described,
sirice~a'wide rantge of-properties-of rule-based systems can.-be formalized and
:proved'-rather than merely tested.

Chapters 2,-3, and 5 relate -to, itemr i (a)-i of the statement of work con-
cernjing.construction of specifications for- knowvledge-:based software; Chap-
ters 4 and 5 relate to itemi 1(a)-li concerning a semantic characterization
of such systems; Chapter 2 relates to -items 1(b)-i and 1(b)-ui concerning
testing; and Chapters 3, 4, and 5 relate to item 1(b)-iii concerning establish-
rneit of ai sound theoretical basis for -checking ruile-based -systems. Several
of-these chapters draw on the work of Judy Crow, of -the Computer Science
Laboratory.

4I

Chapter 2:

Testing, of Rule-Based
Systems-

We follow convention-iin using-the general term "testing" to refer strictlyto
the notion of dynamic testing, in which programbehavior is observed- as a
function- of program execution. Conversely, static testing refers to analysis
of program text, and possibly related formulations such a requirements and
specificatiohs, independent of execution behavior. The purpose of dynamic
testing is to-examine the behavior of the system over a "reasonable" input
sample. Given that the input space of most programs is intractably large, a
sample is typically defined by partitioning the input space into equivalence
classes whose members are expected to exhibit similar behavior. One "rep-
resentative" from each class is then selected for testing. 1 The equivalence
criteria determine which of several dynamic testing strategies is most ap-
propriate. In the following discussion, we focus primarily on two strategies:
functional or "black-box" testing and structural or "White-box" testing. We
discuss techniques developed for conventional software which also appear
productive in the domain of rule-based AI software.

2.1 Functional Testing

The goal of functional testing is to discover discrepancies between the actual
behavior of a software system and the desired behavior described in its func-
tional specification. In functional testing, test data are selected with respect

1There are of course alternative ways of defining the input sample (cf., for example,
[27, pp. 29-30]), but the approach mentioned here appears to be the most widely used.

|,5

Chapter 2. Testing of Rule-Based, Systems

to a program's function as defined by its requirements, specification and de-
sign documents-so-called program-independent sources. Several functional
testing discussions, including those in [31] and [25], also cite the importance
of program-dependent sources, including the code itself. In any case, the
relevant sources are used to provide a functional specification which can be
viewed as a typically unspecified or only very generally specified ielation
F on I x 0 for input domain I and output domain 0. Input and output
domains are usually partitioned into groups-or classes based on the relevant
documents or program,-independent/dependent sources; given a certain class
of input, a certain class of output results, i.6., F(i, o), for i E 1, 0 E 0. Typ-
ically, test data are selected which cover the input and output domains,
i.e., input data are chosen which lie well Within or just inside/outside the
boundaries of each class i E I, and produce output representative of each
class o E 0.

The general approach of functional testing is directly applicable to rule-
based Al software. Of course specific techniques which rely on careful or
perhaps even formal specification are less applicable, given the development
paradigm for most rule-based software. We'have concentrated on a synthesis
of two techniques: an adaptation of the "revealing subdomains" method
mentioned above [31] and a variation on random testing in the spirit of
[15,16).

2.1.1 Revealing Subdomains

As noted in [31], the basic intuition behind the notion of revealing subdo-
mains is quite simple; elements of a subdomain behave identically-either
every element produces correct output, or none does. In particular, test
criterion C is revealing for a subset S of the input domain if whenever any
element of S is processed incorrectly, then every subset of S which satisfies
C fails to execute successfully. Let the predicates OK and SUCC denote
successful execution of an element of S and a subset of S, respectively. The
formal statement of the preceding intuitive definition is as follows.

REVEALING(C, S) iff

(3d E S)(-OK(d)) = . (VT C S)(C(T) #- -,SUCC(T)) [31, p. 2391

Unfortunately, as Weyuker and Ostrand also note, running successful
tests from a revealing subdomain S does not in general guarantee that the
program is correct on S; such guarantees are purchased only at a cost equiv-
alent to that of a proof of correctness for the subdomain. On the other hand,

6

Chapter 2. Testing of Rule-Based Systems

we can guarantee -that S is revealing for certain specified errors E. A subL
domain S is revealing for an error E if for a program F, such that E is an
error in F and E affects some element of S, every element s E S is affected,
i.e., - OK(s) [31, p. 239]. Thus, the correct execution of an element from a
revealing subdoinain guarantees the absence of the specified error on that
subdomain. Of course the incorrect execution guarantees only that some
(though not necessarily the specified) error has occurred.

Revealing subdomains are constructed by a two-part process as follows.
The first step consists of partitioning the input domain into sets of inputs,
each of which follows the same or a family of related paths through the pro-
gram. In conventional software, the partition is based on the program's flow
graph. For AI software, either an execution graph or reasonable facsimile
will suffice. The second step consists of specifying the problem partition and
is somewhat less well defined. Weyuker and Ostrand [31, p. 240] state only
that partitions should be formed "on the basis of common properties implied
by the specifications, algorithm, and data structures." To supplement this
somewhat vague directive, we adapt the first three steps of the category-
partition method for specification-based functional tests developed by Os-
trand and Balcer [25, p. 679].2 Using only program-independent sources,
these steps include

1. identify individual functional units which can be separately tested and
for each unit identify and characterize parameters and objects in the
environment crucial to the unit's function;

2. partition the elements identified in 1 into distinct cases;

3. determine constraints, if any, among the cases identified in 2.

Whatever its precise method of discovery, the purpose of the problem par-
tition is to separate the problem domain into classes which are in theory
equivalent with respect to the program, whereas the purpose of the path
domains is to separate the problem domain into classes which are in fact
treated identically by the program. Revealing subdomains are defined as the
intersection of the two classes, i.e., as equivalence classes of input domain
elements which are processed identically by the program and characterized
identically by program-independent specifications. B," definition, each such

2The proces3 enumerated below constitutes only the preliminary analysis suggested
by Ostrand and Balcer who describe a method for creating functional test suites using a
generator tool to produce test descriptions and scripts.

7

Chapter 2. Testing of Rule-Based Systems

subdomain has the property -that either all or none ofits elements are pro-
cessed cor ectly. It follows tliat the actual test data need only consist of an
arbitrary element'fiomn each subdomain.

2.1.2 Random Generati6n of Test Data

In a survey of automatic generation of test data, Ince [15] observes that sys-
tematic use of randomly generated test data potentially provides reasonable
coverage at low cost. The idea, subsequently elaborated in a short note by
Ince and Hekmatpour [16], exploits~preliminary results independently noted
in [9] which indicate that relatively small sets of random test data do appear
to provide good coverage. For programs such as Al rule-based software sys-
tems which typically have little if any program-independent documentation,
random generation of test data seems particularly promising.

2.1.3 A Synthesis

An obvious alternative to either of the techniques mentioned in Sections
2.1.1 and 2.1.2 is their combination. Ideally, this synthesis focuses the low-
cost, good-coverage benefits apparently associated with random generation
of test data on functionally relevant classes of input identified by the reveal-
ing subdomains method. Additionally, the path domains specified by the
revealing subdomains method provide a built-in criterion for evaluating the
coverage of the randomly generated test data.

2.2 Structural Testing

The goal of structural testing is to expose run-time errors by exercising
certain critical execution paths through the program. Execution paths are
typically defined with respect to the program's control flow graph; paths
are selected on the basis of criteria such as all nodes, all edges, or some
combination of nodes and edges. Several researchers have shown that the
most effective path selection criteria exploit context, i.e., data- as well as
control-flow properties of the program [26,24] and Clarke et al. [6] provide a
formal evaluation of these and other criteria based on data-flow relationships.
While the necessity of both data- and control-flow-based properties appears
firmly established, Clarke and her colleagues note that additional studies are
needed to consider issues such as the relative cost and detection capabilities
of the various path selection criteria.

Chapter 2. 'Testiug of Rule-Based Systems

Unfortunately. the notion of path criteria for rule-Ibased systems is some-
what problematic. There are basically two issues: a productive definition
of execution path and, given that, effective path selection criteria, which we
discuss in the order given.

2.2.1 A Definition of Execution Path for Rule-Based Soft-
ware

As noted, the notion of execution path is well defined for conventional soft-
ware, but decidedly ill-defined for rule-based software. This is the case for
several reasons. First, rule bases have both "declarative" and control flow
elements; despite the frequent claim that rule bases are strictly declarative,
there is often implicit encoding of control information.Thus to the extent
that rule bases are declarative, the notion of execution sequence is prob-
lematic, and to the extent that control information is implicit, control fiow
is often difficult to understand and characterize. Second if a rule-based
system is considered independently of the associated inference engine, its
execution is nondeterministic, further complicating the notion of path.

What, then, is a suitable notion of path for rule bases? There are clearly
several desiderata. The notion should be compositional, i.e., it should spec-
ify elementary connections between rules and define paths as their transitive
closures. Additionally, implicit control flow information should be made ex-
plicit. Note that unlike conventional software, where all branches of a pred-
icate or test construct are explicit, rule-based software tends to explicitly
represent only the 'successful' branch; rules which are not enabled are ef-
fectively ignored.Finally, the notion should focus on relevant execution flow
information as opposed to low-level connectivity relationships. The litera.
ture includes several proposals for "execution graphs" for rule bases, two of
which have been specifically proposed as a basis for structure-based testing,
namely the approaches proposed by Stachowitz et al. [28] and Kiper [17].

2.2.1.1 Proposals Extant in the Al Literature

Stachowitz and colleagues specify a Rule Flow Diagram which is in turn
derived from a Dependency Graph (DG). A dependency graph is a represen-
tation for facts and rules 'in a knowledge base, where an arc in the graph
denotes that a literal in the conclusion (RHS) of rule a unifies with a lit-
eral in the antecedent (LIIS) of rule b. Facts are simply rules with empty
antecedents. The intuition behind the dependency graph is that an arc con-

9

Chapter 2. Testing of Rule-Based Systems

nects rules a and b just in case firing rule a can lead to the firing of rule b.
For example, there would be an arc from a to b in the DG representation of
the following rules.

a: AAB---XAZ

b: XAY'-+C

However, there are difficulties with this graph specification. For example,
firing rule a above clearly does not enable the following rule, despite the fact
that rules a and b' satisfy the arc criteria for DGs.

Yl: X A-Z--+ D

A further problem is the apparently unpublished technique for deriving rule
flow diagrams from dependency graphs. In rule flow diagrams, nodes rep-
resent rules and arcs represent execution sequences. The question is, where
does the sequencing information come from? Stachowitz et al. appear to
suggest that rule. flow diagrams can be generated directly from DGs with-
out additional information, but this is surely not the case, as the following
example illustrates.3 The rule set is based on an example in Kiper [17, p. 7].

1 A A B

2 B B.-C

3 : BAC -4D
4 A -A D

5 : CAD-+E

It is difficult to see how a rule flow diagram generated strictly from the
DG would refleci the appropriate execution sequence in which rules 2 and 4
jointly enable rule 5. Furthermore, assuming such a procedure exists, it is
not clear that it produces a generally satisfactory result; if rule sequencing
rather than some notion of causality is the criterion on arcs, information
such as the fact that rules 2 and 4 jointly enable rule 5 could be lost.

Finally, and perhaps most important, the DG appears useless for rule-
based systems characterized by (re)occurrences of a given set of literals in

'Curiously, in the only published test case we could find (4, p. 3], it is not at all clear
how the hlow diagram is derived from the rule base; no DG is provided and arcs appear
from rule 2 to rules 5,6,7,8 despite the fact that there are no literals common to rules 2
and 5-8 in the .example given in [4, p. 3].

10

Chapter 2. Testing of*Aule-Based Sistems

a large number of rules. In the worst case all rules would be connected;
in less extreme cases, however, the problem of excessive connectivity is still
significant.

The DG. rule flow diagram pair appears to be the most widely cited of
the rule-based analogues to execution graphs, but as suggested above, it is
somewhat less than satisfactory. We turn now to the alternative proposed
by Riper.

Riper [171 suggests agraph construction which explicitly rel)resents the
notion of causality. In these graphs, nodes represent rules and arcs denote
the relation "enables." Specifically, rule i enables rule j just in case the
firing-of rule i results in rule j's addition to the agenda. Note that an arc in
this type of graph specifically does not mean either that as a result of rule
i firing, rule j will fire, or that the RHS of rule i unifies with a condition
on the LHS of rule j. What it does mean is that the cumulative effect of
the chain of rules ending in rule i is to cause rule j to be added to the
agenda, and moreover the conditions for j to fire were not satisfied prior to
the firing of rule i. In addition, Riper explicitly represents conjunction and
disjunction. Thus Riper's graph of the preceding five rules would reflect the
fact that rules 2 and 4 jointly enable rule 5. More important, Riper's graph
construction is based on a criterion which specifies that the representation
for rule bases be independent of any inferencing mechanisms. We think this
is a useful criterion. Nevertheless, there appears to be a serious drawback to
Kipor's representation: in general, it is not conveniently computable. This
follows from the fact that there is no locality condition on arcs; i.e., the
existence of an arc from rule i to rule j is a function of the entire path up
to and including rule i. For example, consider the two rules below, where
the existence of an arc from rule 1 to rule 2 depends on whether the path
leading up to rule 1 has already established Y.

1: AAB--+X

2: XAY--+Z

To summarize, we have analyzed two candidates for graphing the ana-
logue of execution paths for rule-based systems and found both to be defi-
cient with respect to the criteria of compositionality, explicit representation
of control flow, and effective representation of information flow proposed
at the beginning of this section. In the following section we suggest an
alternative notion of execution path for rule-based systems.

11

Chaptei 2. Testing of Rule-Based Systemns

2.21.2 An Alternative Proposal

The notion of execution path proposed below for rule-based systems reflects
execution sequencing and information flow at the level of rule interaction.
Note that this differs fundamentally from the notion of control flow typically
graphed for conventional software, which reflects sequencing betweei state-
ments and more fine-grained information-flow, i.e., data-flow properties. For
example, control flow graphs for conventional software explicitly represent
loop statements, whereas our representation ignores loops and other rule-
internal constructs. 4

An execution flow graph for a rule-based system S is a (not necessarily
unique) directed graph G(S) = (N, E, Ni, Nf), where N is the (finite) set of
nodes, E C N x N is the set of edges, and Ni _ N, Nf _ N are the sets of
initial and final nodes, respectively. Each node in N represents a rule in the
rule base of S. For each pair of distinct nodes m and n in N which satisfy
constraints C on the rules represented by m and n, there is a single edge
(i, n) in E. The constraints, C, are as follows:

1. for every predicate p which appears as the outermost symbol of a term
in both the RHS of m and the LHS of n, the two occurrences of p
must unify;

2. the LHS of i is consistent with the LHS of n; i.e., the LHSs of the
two rules exhibit no overt contradictions.5

In this initial formulation, there are no edges of the form (n, n).
An execution flow graph defines the rule-execution sequences or paths

within a system S. A subpath in G(S) is a finite, possibly empty sequence of
nodes p = (n,, n2,..., Itlen(p)) such that for all i, 1 < i < len(p), (ni, ni+1) E
E. We denote the set of all paths in G(S) as PATHS(S). A cycle is a
subpath of length > 2 which begins and ends at the same node. The graph
G(S) is well-formed if" every node in N occurs on some path p E PATHS(S)
and G(S) contains no cycles. 6

4Of the three extant Al-based graph representations, only Stachowitz et al. graph rule-
internal constructs. As noted in Section 2.2.1.1, this granularity has certain drawbacks.

'For computational reasons, we don't want to check the consistency of the LHSs of
the transitive closure of all rules reachable from m, but it might be productive to set some
experimentally determined bound, e.g., check all rules in the length i subpath terminating
at m.

CThe no cycle condition is probably too restrictive, but there is clearly a large class of
systemsthat satisfy this constraint.

12

Chapter 2. Testing of RUle-BAsed Systems

Let's see how well the proposed graph formalism handles the previous
examples, which We reproduce below.

a: AAB-XAZ
bY X A -,Z -- D

This case is straightforward; although the DG representation erroneously
includes an edge from rule a to rule b', the edge is ruled out by constraint 2 in
our graph formalism. The next case, derived from an example in Kiper [17],
is more challenging. Consider the now familiar rule set below.

1 A -.-.,B

2 : B--*C

3 : BAC.- D
4 A --+D

5 : CAD-+E

Due to the fact that each rule has a single term RHS, our graph and the
DG. for this example are identical and appear as shown below.

1 4

Figure 2.1: Execution Flow Graph for Kiper Rule Set

As given, the graph illustrates three paths which do not correspond to
possible execution sequences: [1,2,5; 1,3,5; 4,5]. However, if we postprocess

13

Chapter 2. Testinigof Rule-Based Systems

the graph, drawing aii arc as shown below between the edges of all nodes
which jointly satisfy the LEIS of their common immediate successor 7, the
graph exhibits all and only the correct execution paths for the given rule
set.8

4

2

5

Figure 2.2: Revised Execution Flow Graph for Kiper Rule Set

2.2.2 Path Criteria for Rule-Based Software

As defined in (61, a path selection criterion is a predicate which assigns a
truth value to any pair (M, P), where M is a program module and P is a
subset of PATHS(M). Accordingly, a pair (M, P) satisfies a criterion C iff
C(M, P) = true. The purpose of path selection criteria is to identify for
testing a productive subset of the potentially infinite set of paths through
a module, where the notion of productivity is relativized to a particular
testing objective. Given the set of well-formed graphs specified by our graph
formalism, the set PATHS(S) for any rule-based system S is clearly finite.
Accordingly, our path selection criterion is modest to the point of vacuity;

7Node j is an immediate successor of node i just in case there is an edge from i to j.
'We could further stipulate that equivalent paths such as [1,2,3,5] and [1,2+3,5] be

"collapsed." It seems likely that the postpass will have to be more sophisticated to han-
dle other less immediate relations between rules. An alternative is to add additional
constraints to the constraint set C.

14

Chapter 2. 1esting'of Rule-Based Systems

we mierely specify complete path coverage, i.e., the equivalent of the all-paths
criterion defined foi conventional software in [26]. 9

In conclusion; many of the testing techniques that have been developed
for conventional software do not carry over directly to rule-based systems.
Furthermore, while testing can detect errors, it is of limited value in es-
tablishing their absence. In the following chapters, we turn to validation
methods based on logical proof.

9 More experience with the graph representation, including a reformulation of the well-
formedness condition, may well expose a need for more substantive path selection criteria.

15

Chapter 3

Proving Consistency of
Rule-Based Systems

Several authors have proposed methods for testing rule-based systems for
consistency [12,23,29] but none of them present a rigorous definition for rule-
base consistency. A promising starting point might be to interpret rules
as sentences in a logic and take the interpretation of consistency directly
from logic-a theory is consistent if and only if it has a model (i.e., soie
interpretation of its constant, function, and predicate symbols that valuates
all its formulas to true).

It turns out that this approach will not work. In logic, the following set
of formulas (where - is interpreted as logical implication) is consistent:

p - q

pAr -- q

16

Chapter 3. Proving Consistency of Rule-Based Systeins

since both formulas evaluate to-true in any interpretation that assigns false
to p. Hlowever. if these formulas are interpreted as~rules, and p and r are
input variables assigned-the Value truej then both q and -,q willobe asserted-
an obvious contradiction. The problem here is that although -the rules are
consistent on their own, they form an inconsistent theory when combined
with certain initial valies. That is, -the following "instantiated theory" is
inconsistent:

p -- q
pAr -nq

p
r

The explanation is, of course, that it is not therule;base alone that induces
the theory corresponding to an expert system-it is the rule-base plus the
initial facts.

This observation allows us to define consistency for the theory corre-
sponding to a ruile-based system as followst 'let Io be any interpretation
for the inputs to the system (i.e., assignment of initial values),' then there
must exist a model for the rule-base (interpreted as a theory) which is an
extension to &o

We can extend this idea to accommodate "user-defined" notions of in-
consistency as well. For example, the following set of rules

p -- good

pAr -*bad

is not inconsistent in the sense just defined since there is no logical incon-
sistency in assigning true to both "good" and "bad." If, however, the user
considers this assignment to be undesirable, then he may supply the propo-
sition

-(good A bad)

as a specification constraint. The requirement is then to show that any
assignment to the inputs of the system can be extended to a model for the
rule-base, and any such model will also satisfy the specification constraints.

This notion of consistency leads naturally to an algorithm for testing
certain simple (acyclic) propositional rule-bases for the property.

'If there is a validity constraint on input values, then we can restrict the interpretations
to those which satisfy it.

17

Chapter 3. Proiing Consistency of Rule-Based-Systems

1. Order the rules so that all those in which- a given condition element
appears in the RItS piecede all those in which it appears in the LHS
(i.e., elements must be defined before they are used). If this ordering
cannot 'be satisfied, then the rule base does not have the necessary
acyclic property and cannot be tested by this algorithm.

2. Work through each rule in turn, assigning a "label" to each condition
element appearing in its RHS as follows:

* The label for each input element is itself,

* The "local label" for each element on the RHS is formed by sub-
stituting into the LHS the label for each element appearing in the
LHS.

* If a condition element appearing on the RHS already has a label,
then update that label by disjoining the local label to it; otherwise
assign the local label as the label.

3. When all labels have been assigned, test for logical consistency by
showing that the conjunction of the labels for each condition element
and its negation is unsatisfiable, and test for specification consistency
by showing that any specification constraints, with condition elements
instantiated by their labels, are tautological.

A couple of examples should make this clear. If we take the following pair
of rules:

p -- q
pAr - q,

then the inputs are p and 7. The first rule yields p as the label for q, while
the second yields p A r as the label for -,q. For consistency, we need to test
whether the conjunction of the labels for q and -q-i.e.,

p A (p A r)

is unsatisfiable. Since it is not (it is satisfied by the assignment of true to
both p and r), we conclude that the rule base is inconsistent.

Similarly, for the rules

p --* good

pAr -* bad

18

Chapter 3. Proving Consistency of Rule-Based 6).'stems

and the specification, constraint

-,(good A bad)

we compute the la.bel p for "good" and p A r for ")a(P and therefore need
to test whether

-'(pA (p A ,')

is a taitology. Since -it is not, we c6nclude that the rule base does, not satisfy
its specification constraint.

This technique dis easily extended to deal with a form of "closed world
assumption" in which negative condition elements cannot be asserted di-
rectly, but are assumed if the corresponding positive condition element has
not been asserted. In this-case, the label for a negative condition element
is simply the negation of the label for its corresponding positive element.
Obviously, in this case only specification constraints -need to 'be checked.
The -mixed case, in which some negative conditions are -asserted -directly,
and others are assumed from the absence of the positive assertion, can also
be accommodated.

The algorithm described here is obviously very limited: it works only for
acyclic, propositional rule bases, and ignores conflict resolution. Nonethe-
less, it accomplishes rather more than Ginsberg's KBReducer [12,13], is
considerably simpler (and-almost certainly faster) and, unlike Ginsberg, we
have given a specification for the notion of consistency that is checked by
the algorithm. We have implemented our algorithm in Scheme.

19

Chapter 4

Term-Rewriting Semantics
for Rule-Based Systems

We develop a term rewriting system (TRS) semantics for OPS5-like rule-
based systems. Our treatment of production systems here differs from earlier
presentations. Rule-based systems (also termed production systems) have
been defined by Forgy [10,3] as follows.

A production system is a program composed entirely of condi-
tional statements called productions. These productions operate
on expressions stored in a global data base called working mem-
ory. The productions are stored in a separate memory called
production memory. The production is similar to the If-Then
statement of conventional programming languages: a produc-
tion that contains n conditions C1 through Cn and m actions A,
through Am means

When working memory is such that C1 through C,
are true simultaneously, then actions A1 through Am
should be executed.

The condition part of a production is usually called its LIIS (left
hand side), and the action part is called its RHS (right hand
side).

The production system interpreter executes a production sys-
tem by performing a sequence of operations called the recognize-
act cycle:

20

Chapter 4. "erm -Rewriting Semantics 1br Rule-Based Systems

1. [Match] Evaluate the LHSs of the productions to determine
which are satisfied given the current contents of working
memory.

2. [Conflict resolution] Select one production with a satisfied
LHS. If no productions have satisfied LHSs, halt the inter-
preter.

3. [Act] Perform the actions specified in the RIIS of the se-
lected -production.

4. Go to step 1.

The production system we present here is a simplified version of OPS5.
Data in working memory and productions are just atomic formulas instead
of terms with attribute-value pairs. Actions, such as input and output, other
than those that alter working memory or halt execution, are not present.

Nevertheless, this simplified version captures the-essence of OPS5 oper-
ation: a recognize-act cycle executes productions to map states described
by the contents of working memory to new states described by the new
contents of working memory; conflict resolution restricts the application of
productions when more than one might be applied.

A semantic characterization of the simplified production system is very
useful for understanding the operation of OPS5 and OPS5 programs. It
would be easy to extend our system to the exact form of OPS5 terms and
their match procedures, but this would not be very fruitful, since the useful
and interesting semantic features of OPS5 concern the selection (by conflict
resolution) and application of productions.

Likewise, incor'orating the semantics of other action types, such as input
and output or dynamic addition of productions, would detract from our
effort to identify the semantics of the essence of OPS5-like systems. This
is consistent with semantic analyses of other systems. For example, the
fixpoint semantics of Prolog with negation as failure also ignores input and
output and assert and retract operations [19].

4.1 Elements of OPS5

The data and program of a production system written in an OPS5-like lan-
guage are stored in working memory and production memory respectively.
The rules in production memory that comprise the program are applied
to the data in working memory by the production system interpreter's

21

ChApter4. Term-Rewriing Semantics for Rdile-Based Systems

'recog hiize~act cycle ,that -iecognizes a rule's applicability and executes its
actions. A conflict resolution strategy decides which rule to apply if more
than one:is applicable.

4.1.1 Working Memory

The working memory of an. OPS5-like language can be approximately char-
acterized as a set of variable-free atomic formulas.

4.1.2 ProductiOn Memory

The production memory of an OPS5-likelanguage can be characterized as
a set of rules of the form

conditions - actions

where the LHS is a set of conditions that must be satisfied for the rule to be
applicable and the RHS is a set of actions that are executed when the rule
is applied.

Conditions can be expressed by atomic formulas or negated atomic for-
mulas and may contain variables. 1 The atomic formulas in conditions are
referred to as positive condition elements and the negated atomic formulas
are referred to as negative condition elements. We require that every variable
in a negated atomic formula also appear in an unnegated atomic formula.
The rule

SP,...,P., not N 1,..., not Nn --+ actions

is applicable if there is a substitution a of variable-free terms for the variables
of Pi,...,Pm such that

Pla EW,...,P m EW ,Nia W ,...,Nnu'gW ,

where W is the current contents of working memory.
The most important actions are to make a new working memory element,

to remove a working memory element matched by a condition, to modify (the
arguments of) a working memory element matched by a condition, or to halt
execution.

'OPS5 working memory elements arc atomic formulas. Negated atomic formulas as
conditions stipulate absence from working memory of the atomic formula. Some other
rule-based systems allow negated atomic formulas as working memory elements [11,30].

22

Chapter 4. Term-Rewriting Semantics for Rule-Based Systems

4.1.3 Recognize-Act Cycle

The recognize-act cycle fihids an applicable rule and executes it. It can be
written as

until no rule is applicable or
a halt action has been executed

select a rule whose LHS is applicable
to the current contents of working memory

and execute the actions of its RHS

4.1.4 Conflict Resolution Strategy

In the recognize-act cycle, more than one rule may be applicable to the cur-
rent contents of working memory. In such a situation, the conflict resolution
strategy restricts the choice of which rule is to be applied.

The simplest conflict resolution strategy chooses randomly which rule'to
execute, from the set of applicable rules.

Random choice is often infeasible. More restrictive conflict resolution
strategies may be necessary. Some very complex conflict resolution strate-
gies have been developed to fairly tightly constrain choice of rules. Such
complexity makes analysis of rule-based systems and specification of their
semantics very difficult without specifying the whole conflict resolution strat-
egy in minute detail.

To have some hope of developing analyzable rule-based systems, only rel-
atively simple conflict resolution strategies can be considered. Two criteria
often used for rule choice are recency of matched working memory elements
and specificity of condition instantiations. We believe that for many pur-
poses the recency criterion can be ignored, but the specificity criterion must
somehow be modeled, since it is such an important aspect of the program-
ming of rule-based systems.

It seems to us that a major purpose of the recency criterion is to yield
"focused" behavior of the rule-based system. The recency criterion tends to
force the system to apply rules whose conditions match recently added or
modified working memory elements. This results in focused system behav-
ior, because the rules selected tend to be those whose inputs (conditions)
are the outputs (actions) of the most recently applied rules. This focus
makes behavior of the system more comprehensible to the human observer,
since the system is more inclined to execute several steps of a single task in
sequence, instead of interleaving operations from several different pending

23

C hapter 4. TermmReivriting Seihantics for Rule-Based Systems

tasks. We choose to ignore recency as a criterion that must be modeled,
since alternativeexecution orders may still be intended to yield the same
final result.

On the other hand, modeling the specificity criterion seems to be critical.
The specificity criterion is used to program special vs. general case behavior.
If LHS1 -". RIS1 and LHS2 - RIIS 2 are two rules such that LHS is
more specific than LHS2 (i.e., there is a substitution 0 such that LHS 1 C
LHS 2), then the first'rule, if it applies, will be executed in preference to the
second.

The more specific rule can be used either to refine or to displace the
behavior of the general rule. If it applies, the more specific rule is executed.
We assume that the rule's actions alter working memory so that the rule is
no longer applicable. 2 The conditions of the less specific rule may remain
satisfied after the more specific rule has been executed, or some of its con-
ditions may no longer be satisfied by working memory. In the former case,
both rules are executed, and the results of the general-case rule are added
to those of the special-case rule; in the latter case, only the special-case rule
results are computed.

4.2 Term Rewriting Systems

A term rewriting system is a set of rules

LHS -+ RHS

where the variables of RHS are all variables of LHS. A rule LHS --. RHS
of a term rewriting system can be applied to a term t if some subterm u
of t is an instance LHSa of LHS. In that case, t(u) can be rewritten
to t(RHSa), i.e., the subterm u that matched LHS is replaced by the
corresponding instance of RHS.

2 A "refractoriness" criterion in the conflict resolution strategy can be used to allow the
conditions of the rule to remain satisfied, but inhibit the rule's repeated execution. We
will ignore modeling such criteria in this analysis.

2-4

Chapter 4. Term-Rewriting Semantics for Rale-Based Systems

Term rewriting systems can be used to perform equational reasoning,
where LEIS -, HS is a directed (because left-hand sides are replaced by
right-hand sides and not vice versa) version of the equality LIIS = RHS.
For example, the set of rules

O+X - x

X+O X

X+(-X) -- 0

(-X)+x 0

-o -0 0
-(-X) -- X

(X+v)+z - X +(Y+Z)

-(T +)-- (-Y) + (-X)

(-x)+(x+Y) Y

is a set of rules for some equalities of group theory with addition function
+, inverse function -, and identity element 0.

Term rewriting systems have been extensively studied and there are
many interesting properties that can be explored.

The most notable properties that a term rewriting system may have are
termination and confluence. A term rewriting system has the termination
property if no term t can be rewritten as an infinite sequence of terms, i.e.,
for no t, t ---+ tj ... - ti.... Like the halting problem for Turing machines,
determining whether a term rewriting system has the termination property
is undecidable in general, though it can often be decided in specific cases.
The set of rewriting rules above has the termination property.

A term rewriting system has the confluence property if for any term t
that can be rewritten in two ways: t -- ... - t' t and t ... t I" there
is a term s such that t') ...--- sand t" -- ...--- s. In effect, the
confluence property states that regardless of which rewriting rule is applied
whenever more than one is applicable, one can still reach the same result.

Term rewriting systems that are both terminating and confluent are
called complete. They have the very desirable property that if t1 and t2 are
equal in the equality theory of the rules, then the irreducible term t that
results from rewriting tj until no rule is applicable is identical to the irre-
ducible term t2 that results from rewriting t2 until no rule is applicable. The

25

Chapter 4. Term-Rewriting Semantics for Rule-Based Systems

set -of rewriting rules above is. a terminating and confluent and thus com-
plete set of rewriting rules for the theory of free groups. For term rewriting
systems with the termination property, it is decidable to determine if the
system is confluent. Moreover, the Knuth-Bendix method [18] that is used
as -the decision procedure for confluence sometimes succeeds in extending
nonconfluent term rewriting -systems to confluent ones. For example, the
complete term rewriting system above can be automatically derived from
the axioms of a-free group:

O+X = x
(-X)+ = 0
(X+Y) = X+(Y+z)

A further possible property of term rewriting systems that is relevant
to our effort to define a term-rewriting-system semantics for OPS5-like lan-
guages (since working memory is variable-free (i.e., ground)) is ground con-
fluence. A term rewriting system may be confluent on all ground terms,
even if it is not confluent on all terms, which may include variables. Unfor-
tunately, determining ground confluence is undecidable in general.

4.3 A Rewriting Interpretation of OPS5

Just as the rules of a term rewriting system rewrite a term, the rules of a rule-
based system can be viewed as rewriting the contents of working memory
to the new contents of working memory. This viewpoint allows OPS5 rules
to be reformulated to omit reference to the procedural notions of making,
removing, and modifying working memory elements.

Consider the rule

A, B, C, not D - modify(A), remove(B), make(E)

This can be reformulated as a rewriting rule in which the RHS specifies
which atomic formulas replace the working memory elements that match

positive condition elements A, B, C:

A, B, C, n ot D - A', C, E

Formally, let Pk be the set of atomic formulas that appear in positive
condition elements in the LIIS of production k and N be the set of atomic

26

Chapter 4. Term-Rewriting Seman tics, lbr Rule-Based Systems

formulas thatappear in negative condition elements in the LHS of produc-
tion k.

The applicability of production k to working memory +'V with substitu-
tion 0 can be defined by

applicable(k, W, 0) - (PO C W) A (W n NkO = 0)

Let Ak be the set of atomic formulas that appear in the RHS of produc-
tion k.

Suppose production k is applicable to working memory W with substi-
tution 0. Then the result of executing production k on working memory W
with substitution 0 is W', where

W' = (W - PkO) U AkL0

OPS5 programs are defined to halt execution if no production is applica-
ble or a halt action is executed. The latter condition can be reduced to the
former by a transformation on the set of rules: Create an atomic formula
named halt and add not halt as a condition element to the LHS of each pro-
duction; include the halt atomic formula in the RHS of each reformulated
production whose RHS included a halt action. For example, the rules

LHS1 - RHS1

LHSi -- RHSi, halt

LHS, -* RHSn

is reformulated as

LHS1 , not halt * RIIS

LHSi, not halt -- RIIS,halt

LHSn, not halt R HS5,

27

Chapter 4. Term-Rewriting Semianitics Ibr RulemBasecd Ssterns

The HS element halt in the original set of rules refers to the halt action;
in thereformulated rules, the element halt that appears negated in the
conditions and in the RHS is the atomic formula halt, whose presence in
working-memory may be created by rule i, and whose absence is required
for the applicability of every rule.

4.4 Analysis

Viewing OPS5-like systems as term rewriting systems permits a less pro-
cedural,' more abstract and logical expression of programs. The working
memory, now expressed in presence and absence conditions in the LHS and
replacement formulas in the RHS, can be regarded as a set of terms which
can be reasoned about.

The term-rewriting-system viewpoint allows us to ask questions about
OPS5-like systems that parallel those about term rewriting systems, e.g.,
questions of termination and confluence. With termination assumed, con-
fluence is a desirable property that assures that the same conclusion will be
derived regardless of the choice (suitably restricted by the conflict resolu-
tion strategy) of which rule to execute at each point. Even if the system is
deliberately nonconfluent, it would be desirable to learn something of the
extent and nature of the system's indeterminacy by testing for confluence.
Unfortunately, complete confluence tests for conditional and priority term
rewriting systems, which the transformed OPS5-like systems resemble, do
not exist [22].

Efforts to extend standard Knuth-Bendix confluence tests to transformed
OPS5-like systems have failed so far and demonstrate that negative condi-
tion elements and conflict resolution by specificity both pose difficulties for
determining confluence.

For example, consider the set of rules

A - B

A --*C

B - D

C, not.E -E D

which contains a negative condition element not E. The standard Knuth-
Bendix confluence test proves the confluence property for ordinary term
rewriting systems by demonstrating local confluence: any time two rules

28

Chapter 4. Term-Rewriting Semantics br ?R.ule-Based Systems

-with overlapping LHSs are -both applicable, the results of the two rule ap-
plications-can both be reduced to the same final result. The only overlap
in this example is between A -- B and A -- C and results B and C
can be reduced -to the same final result D. However, A, E reduces to B, E
and C, E, which can be reduced to final results D, E and C, E, so the rules
are not confluent. The problem is that the counterexample to confluence
A, E is not the result of overlapping a pair of rules. Exhaustive generation
of inputs or exhaustive symbolic execution can discover such instances of
nonconfluence, but is likely to be costly and incomplete.

Also consider the rules

A - B

A -- C

B .-- VD

C -+D
C, E --- P

with the rule with LHS C, E taking precedence by specificity over the rule
with -LHS C. Like the previous set of rules, this set is confluent on input A,
but not A, E.

That negative condition elements and conflict resolution by specificity
should yield similar difficulties for confluence testing is not surprising, since
sets of rules ordered by specificity may be translatable into sets of rules that
do not require conflict resolution by specificity by adding negative condition
elements to the more general case rules. For example, translating the rules
C - D and C, E --- F into C, not E -* D and C, E -- F eliminates
the need for conflict resolution by specificity.

Simple confluence tests for OPS5-like systems, and determining other
formal properties easily, will probably require further simplification of the
system-, such as eliminating negative condition elements and conflict res-
olution strategies-perhaps unacceptable changes to the systems-or more
global, exhaustive analysis that may take account of the finite universe of
formulas that may occur in working memory.

29

Chapter 5

Proving Properties of
Rule-Based Systems

5.1 Introduction

Languages based on rules are an appealing implementation vehicle for expert
systems. The system can be developed incrementally without much prelim-
inary planning. In introducing a new rule, one supposedly need have little
understanding of how the rest of the system behaves. The rules may em-
body the advice of many different experts, who are ignorant of each other's
opinions and may even disagree with each other. Proponents of rule-based
methodologies have found that they can develop running systems far more
quickly than with conventional programming languages.

As a consequence of this success, expert systems based on rules have
been proposed for tasks of increasing responsibility, including aircraft and
spacecraft fault diagnosis as well as financial and medical advice. For this
reason, the question arises of how we can establish that these systems will
be worthy of our confidence?

This is where a conflict emerges. Accumulated experience suggests that
to be trustworthy, a system must be constructed in a systematic way that
begins with an attempt to formulate its specification prior to the implemen-
tation effort. This doctrine is antithetical to the rule-based system method-
ology, in which the intended behavior of the system changes at each stage
of its implementation. The system is developed in the absence of specifica-
tions; in fact, the methodology may be regarded as a framework for rapid
prototyping, in wh:ch we gradually formulate an executable specification

30

Chapter 5. Proving Properties of Rule-Based Systems

through- experimentation. On the other hand, a complex nondeterminis-
ticsystem of rules is rarely acceptable as a specification; it is difficult for
anyone, including its developers, to predict what it will do.

It is not the purpose of this chapter to criticize or improve the rule,
based system methodology. Rather, We shall attempt to apply deductive
techniques to support the methodology as it is practiced. We shall pro-
vide techniques to determine What a rule system does, to identify its faults,
and to establish confidence in it. One may be able to formulate a single
specification that characterizes the intended behavior of the system. That
specification may then be used as the basis for a reimplementation of the
system using conventional software-engineering techniques. We may hope
that the reimplemented system will be more efficient, concise, and reliable
than the original.

In other cases, in which the system is too complex to allow a full speci-
fication to be verified or even formulated, we can use deductive methods to
assist in the testing of the system. We can generate sets of test cases that
exercise all the rules of the system or that cause certain inconsistencies or
anomalies to occur. We can detect that certain rules will never be executed.
The same deductive framework can serve a variety of these purposes.

Because rules look like logical sentences, it is tempting to treat them
that 'way, and analyze them for properties such as consistency. In fact,
rules cannot usually be understood in a purely declarative way. They are
imperative constructs with the intended side effects of adding and deleting
elements from a single data structure, the "working memory." In this report,
we treat a rule language as an imperative language. Because all side effects
in the language alter a single structure, the language is more amenable to
logical analysis than most imperative languages, such as those with general
assignment statements.

Special problems arise because of the nondeterministic nature of rule-
based languages. A situation can occur in which more than one rule is
applicable, and the system implementation must choose between them. Dif-
ferent implementations may make different choices and a system may behave
correctly in one implementation and not in another. It may be difficult to
anticipate what different implementations may do.

Conventional program verification often assumes that a full specification
for a correct system is available. In this work, we recognize that the system
may be incorrect and the specification may be only partial. We detect faults
and formulate the specification gradually, as a result of attempts to prove
a series of conjectures about the system. A further option is to attempt to

31

Chapter .5. Proviig Properties of) Itile-Based Systems

prove the.conjecture's negation, which will hold if the system fails to possess
tie desiied property.

In most work -on program verification, a proof gives us at best a yes/no
answer as to whether a system meets its specification. Implicit within a.
proof, however, is other potentially valuable information, which is usually
discarded. For example, if we prove the existence of a fault in a system,
we may be able to extract from the proof a description of the conditions
under which that fault occurs. Program synthesis techniques for extracting
programs from constructive proofs (e.g;, Manna and Waldinger [20]) may
also be applied to extract other sorts of information.

5.1.1 Validation Tasks

In keeping with these goals, we consider a variety of validation tasks, most
of which have both a positive and a negative aspect.

(+) Verification: Proving that a system will always satisfy a given
condition.

(-) Fault detection: Exhibiting an input that causes a system to fail
to satisfy a given condition.

(+) Termination: Proving that a system will always terminate.

(-) Loop detection: Exhibiting an input that will cause a system to
fail to terminate.

(+) Firing: Exhibiting an input that causes a given rule to fire.

(-) Redundancy: Proving that no input will cause a given rule to fire.

(+) Consistency: Proving that no input can produce an inconsistent
working memory.

(-) Inconsistency: Exhibiting.an input that will produce an inconsis-
tent working memory.

Some of these problems are significantly more difficult than others. For
example, to prove that a system always terminates will generally require
considering all execution histories beginning from any possible input, at
least in principle. Exhibiting an input that causes Rule A to fire may require
considering a small number of inputs and only part of the system. Thus,
we can expect to be successful at this smaller task more readily than at
establishing termination.

32

Chapter 5. Proving-Properties of Rule-Based Systems

5.1.2 The System Theory

Our approach is deductive. For a given system of rules, we develop a-system
lheory, which is defined -by-a set of axioms that express the actual behavior of
the system. The system theory also incorporates any background-knowledge
we wish to take into account in Validating the system. For each validation
task, there is an associated conjecture. If we can manage to establish the
validity.of the conjecture-in thesystem theory, we have performed* the asso-
ciated' validation task. Typically, to perform the negative aspect -of a task,
we prove the negation of the conjecture as~ociited with its positive aspect.
If we want to exhibit an input or other object as part of our task, we must
restrict the proof to be sufficiently constructive to tell us how to build such
an object. The description of the object can then be extracted from the
proof.

5.1.3 Related Work

There have been several efforts to apply conventional testing techniques to
rule-based systems (e.g., Becker et al. [1], Kiper [17]). The body of work
closest to ours is that of Chang, Combs, and Stachowitz [28,4,5] at the
Lockheed Artificial Intelligence Center. The Lockheed work, like ours, deals
with some specifications of the expected properties of the rule-based system
and uses deductive methods to establish them. It uses Prolog as an inference
system, which limits it to properties expressed as Horn clauses. The SNARK
theorem prover we are developing accepts properties in a full first-order logic,
with equality and mathematical induction. Our work is also original in that
it presents a unified theoretical framework for expressing and establishing
properties of rule-based systems.

5.1.4 Outline of this Chapter

We first provide a description of a somewhat idealized rule language in
Section 5.2. For a given system of rules, we show how to construct a corre-
sponding system theory in Section 5.3 and in Section 5.4 how to translate
validation tasks into conjectures in the theory. In Section 5.5, we exhibit por-
tions of a validation proof and present a scenario leading to the formulation
of a specification for a textbook rule-based system. Finally, in Section 5.6
we describe the SNARK theorem prover we have been developing to prove
validation conjectures and to extract information from validation proofs.

33

Chapter 5. Proving Properties ol Rue-IBased. Systems

5.2 Rule-Based Systems

In this section we present a prototype ruile-based system fraimework that will
serve as the focus of our effort.

5.2.1 The Rule Language

Our rule language is a smoothed-up version of OPS5 [10,3]. A rule describes
an operation to be performed on working memory. The working memory
is a (finite) set of atoms p(tl,..., tk), where p is a predicate symbol and
t,... , tk (k > 0) are terms. The atoms in working memory are ground,
that is, they contain no variables, only constant, function, and predicate
symbols. An atom PO with no arguments will bewritten p. For example,

(farmer(john), banker(mother(john))}

is a working memory.
A rule is an expression of the form

L,...,Lm4 R,...,Rn •

Here each element Li of the left side is a literal, that is, either an atom
P(tI,... , tk) or the negation not p(t1 , ... ,tk) of an atom. Each element Ri
of the right side is an (unnegated) atom. We do not require rule elements
to be ground, that is, they may contain variables. For example

red(x), not big(x) -) blue(x)

is a rule. We impose certain restrictions on rules; these will be discussed
after we have described rule application.

5.2.2 Rule Application

To apply a rule to working memory, we first select a ground instance of the
rule, that is, we replace each of its variables with a corresponding ground
term. We require that the instances of the positive (unnegated) atoms on
the left side of the rule be present in working memory and that the instances
of the negated atoms be absent.

For example, the rule

Rule B: red(x), not big(x)-- blue(x)

34

Chapter 5. Proving Properties of R)ule-Based Systems

is applicable to the working memory

{red(b), big(a)).

The appropriate rule instance is obtained by replacing x with the ground
term b. The instance red(b) of the positive atom red(x) is present in this
working memory; the instance big(b) of the negated atom big(x) is. absent.

To apply an applicable rule to the working memory, we delete the selected
instances of the positive atoms of the left side and add the instances of the
atoms of the right side. For example, to apply Rule B to the working memory
{red(b), big(a)), we delete red(b) and add blue(b), to obtain the new working
memory

{blue(b), big(a)).

Note that instances of the positive atoms on the left side are deleted as
the rule is applied. This means that if any of these atoms is to be retained,
it must appear on the right side as well, so that it can be added back into
working memory.

For example, the rule

red(x), big(x)-- blue(x)

will delete instances of both red(x) and big(x) from working memory. If it
is intended that the rule retain the instance of big(x), the rule must read

red(x), big(x) --- blue(x), big(x).

(This rule describes a situation in which big red blocks are to be painted
blue, but remain big.) The rationale for this convention is that the positive
atoms of the left side are replaced in working memory by the atoms of the
right side; thus the rule behaves as a rewriting of working memory.

One restriction we impose on the language is that every variable that
occurs anywhere in a rule must occur in some positive atom on the left side.
This implies that once we have instantiated these positive atoms, we have
instantiated the entire rule. For example, the rule

red(x), not big(y) - red(z)

violates this restriction for two reasons: the variable y from the negated
atom big(y) and the variable z from the right side are not present in the
positive atom red(x) on the left side. If we attempt to apply this rule, it is

35

Chaptet 5. Proving Properties of Rule-Based S,stems

unclear which instaice of big(.j) is to be absent from working memory. It is
also unclear which instance of red(z) is to be-added.

Wedo not allow explicit negation signs in the working memory. This
is not an essential limitation. If it is desired to express that an atom
P(ti,... ,tk) is false, \re can introduce a new predicate symbol negp, and
include negp(tI,..., tk) in the working memory, with the understanding,
to be expressed in the theory, that negp(tl,. .. ,tk) is the complement of

A rule system is an (unordered) set of rules. To apply a rule system
to a working memory, we repeatedly apply any of the rules to the working
memory, until no rule is applicable. The final working memory is the result
of applying the system. Application of a rule system is nondeterministic;
by selecting different rules, or different instances of the same rule, we may
obtain different results.

5.2.3 Explicit Halting

Our systems halt only when no rule is applicable. Some rule-based languages
offer an explicit halt statement: if the special symbol HALT appears on the
right side of a rule that is applied, the system will halt at once, even if some
rule is applicable. This is a convenience that does not increase the logical
power of the language. As we mentioned in Chapter 4, any system with the
halt feature can be transformed into one that behaves the same way without
the feature. The transformed system includes the negated atom not halt
(thaw. is, not halto) on the left side of each rule. If any rule contains the
special symbol HALT on its right side, it is transformed into a rule with
the atom halt on its right side instead. If such a rule should fire, it adds
the atom halt to working memory. Then no rule will be applicable, and the
transformed system will halt, without invoking any special halt feature.

For example, the system

red(z) -- blue(x)

yellow(x)) HALT

with the halt feature is transformed into the system

red(x), not halt ---+ blue(x)
yellow(x), not halt -+ halt

without the halt feature. The two systems behave the same way.

36

Chapter 5. Proving Properties of Rule-Based Systems

5.2.4 Conflict ResolUtion Strategy

When several rules are applicable to the same working memory, the system
invokes a conflict resolution strategy to choose a single rule to be applied.
Conflict resolution strategies tend to be complex. The spirit of the rule-based
methodology suggests that the correctness of the system should not depend
on the details of the strategy. The choices of the strategy may influence the
efficiency of the system or the understandability of its execution sequence,
but the correctness of the final outcome should be independent of these
choices. Consequently, we have developed an approach that will perform
our validation tasks regardless of the conflict resolution strategy. If some
aspects of the strategy turn out to be crucial to the correctness of the system,
they may be expressed in an augmented system theory.

An exception is made in the case of the specificity aspect of the conflict
resolution strategy, which does ,affect the correctness of the system. Accord-
ing to the specificity principle, a more specific rule is to be preferred to a
more general one. This principle allows us to state a rule in its greatest
generality, and then to add exceptions by introducing new rules, without
the need to qualify the original rule. For example, in the system

Rule 1: bird(x) -+ bird(x), fly(x)
Rule 2: bird(x),penguin(x) -; bird(x),penguin(x),negfly(x)
Rule 3: bird(x),penguin(x),inairplane(z) -

bird(x), penguin(x), inairplane(x), fly(x)

each rule is more specific than the previous one, which t qualifies. It might
be erroneous to apply the earlier rule if the later rule were applicable. For
example, the second rule,

bird(x), penguin(x) - bird(x),penguin(x),negfly(x)

should not be applied if the penguin is in an airplane, because then the third
rule should supersede it. Thus the second rule has the implicit condition
not inairplane(x).

Because specificity has a bearing on correctness concerns, we do want
it reflected in the system theory. We achieve this by transforming rules so
that the implicit conditions imposed by the strategy are made explicit. For
example, Rule 2 would be transformed to

Rule 2' : bird(x). penguin(x), not inairplane(x)
bird(x), penguin(x), negfly(xT)

37

'Chapter- 5. Proving Properties 'of Rule-Based Systems

Rule 2' cannot be applied if Rule 3 is applicable. Rule 1 above would be
transformed into

Rule 1': bird(x), vot penguin(x), nol inairplane(x) - bird(x), fly(x)

Rule 1' cannot be applied if either Rule 2' or Rule 3 is applicable.
We shall apply this transformation before forming the system theory, so

that the specificity aspect of the conflict resolution strategy will be reflected
in our validation.

5.3 The System Theory

In this section, we describe how a given rule system is described in a corre-
sponding system theory, so that questions about the system may be phrased
as conjectures within the theory.

Consider a rule

P1,...,Pi, not Ql,..., not Qj -R,...,Rt

with variables x1,..., xk.
We define a relation applic(r,(t,...,tk),w), which holds if rule r is

applicable to working memory w with variables X1,... , Xk instantiated to
ground terms tl,...,tk, respectively, by the axiom

P1[tl,...,tk] E w
A

A
Piftb ,.. -,tk]E w

applic(r, (tl,..., tk), w) A
Q1 [tl,... , tk] W

A

A
Qj[ti,..., itk] V W

for all ground terms tl,... , tk and any working memory w. Here (t,... , tk)
is a tuple of ground terms and r is a constant that names the rule. We
write P[tl,... , tk] for the result of replacing each variable x1,... , Xk in P

38

Chapter 5. Proving Properties of Rule-Based Systems

with the corresponding term I,1..., tk. In other words, the a.ppropriate
instances of the positive atoms must be present in working memory and the
corresponding instances of the negated atoms must be absent. A separate
such axiom is ,provided for each rule of the system.

For example, for the rule

Rule 1: parent(x, y), not male(x) -- parent(x, y), mother(x, y)

we provide the axiom

applic(rulel, (s, t), w) - [parent(s, t) E tv A male(s) 0. w].

Note that each predicate symbol in a rule is represented by a function
symbol in the system theory. Thus, parent and male are function symbols.

We also define a function .apply(r, (ti,..., tk), w), whose value is the re-
sult of applying the rule r to working memory w with variables i, ... ,Ik
instantiated to ground terms ti,... , tk, by the axiom

if applic(r, (t,...,tk), w)
then apply(r,(t1,...,tk),w)= w - P[tl,...,tki

- Pit,.. .,tk]

+ RItI,.. .,tk].

Here to - u and w + u are the results of deleting the element u from the set
w and adding u to w, respectively.

For example, for Rule 1, we provide the axiom

if applic(rulel, (s, t), w)
then apply(rulel,(s,t),.w)= w - parent(s,t)

+ parent(s, t)
+ nother(s, t).

When we leave a variable free, we mean it to have implicit universal quan-
tification. Also, we use our vocabulary to indicate the sorts of the objects
involved. For example, the above axiom is to apply to any working memory
to and all ground terms s and t.

Note that when a positive atom occurs on both the left and the right
sides of the rule, the corresponding term is first deleted from and then added

39

Chapter .5. Proving Properties of Rule-Based Systems

to the set wo~in the apply axiom. Because the term is certain to occur in the
set, this will always leave the set the same. For example, in the apply axiom
for Rule 1, the term parent(s, t)is first deleted, then added. To simplify the
axioms (and the corresponding proofs), these operations will be omitted.
The apply axiom for Rule 1 will actually read

if applic(rulel, (s,t), w) then apply(ridel, (s,t),w) = w + mother(t).

This translation of rules into axioms depends on our formulation of the
rule language; the translation mechanism for other languages will differ
slightly.

The following axiom tells us that if a rule is applicable to a working
memory, that rule must be one of the rules of the system:

if applic(r, t, w)
then r = rulel V ... V r = rulen,

where t is a tuple of ground terms.
More complex versions of this axiom may be substituted if one desires

to express more subtle aspects of the conflict resolution strategy.
We shall say that the entire system is applicable to a working memory

W, denoted by appl(w), if some rule, with some instantiation, is applicable.
This is expressed by the axiom

appl(w) = (3r, t)applic(r, t, w).

A working memory w to which no rule is applicable, that is, -,appl(w), is
called a final working memory.

5.3.1 Histories

A history is a description of a finite initial segment of a possible computation
of the system. In the theory, a history is a finite tuple of pairs

Each ri is the rule applied at the ith stage of the computation. Each ti
is a tuple of ground terms indicating how the variables of the rule ri are
instantiated at the ith stage.

A history h = ((r1 , t),..., (rn, tn)) is applicable to a working memory
W, denoted by hist(h, w), if there is a finite sequence of working memories

WI1, 2, •..4 I0 +1

40

Chapter 5. Proving Properties of Rule-Based Systems

where w = wl, such that

wV+j = apply(ri, ti, wi);

that is, each memory is obtained from the previous one by applying the
corresponding rule from the history. This is expressed by the axioms

hist(Owt)
hist((r, t) 9 h, w) E applic(r, t, w) A hist(h, apply(r,t, w))

for all working memories w, rules r, tuples of ground terms t, and histories
h. Here (r, t) * h is the history obtained by inserting the pair (r, t) at the
beginning of the history h.

The result sys(h, w) of applying an applicable history h to a given work-
ing memory w is expressed by the axioms

sys(O, w) = o
if hist((r, t) * h, w) then sys((r, t) * h, w) = sys(h, apply(r, t, w)).

The second axiom states that the result of applying a nonempty history is the
same as that of applying the first rule and instantiation, and then applying
the remainder of the history. The result is itself a working memory.

Note that a history describes an initial segment of a computation of a
rule system, not necessarily a full computation; more rules may be applicable
to the resulting working memory. We say that h is a terminating history
starting from w, denoted by ter(h, w), if h is applicable to w and results in
a final working memory. This is expressed by the axioms

ter(O, w) = .appl(tw)
ter((r, t) * h, w) applic(r, t, w) A ter(h, apply(r, t, w)).

It can be established that

ter(h, w) hist(h, tv) A -iappl(sys(h, w)).

5.3.2 Finite Sets and Unique Names

Because we use finite sets of expressions to represent working memory, it is
necessary to incorporate the theory of finite sets into our system theory. In
particular, we include axioms that describe the set addition function iv + v

41

Chapter .5. Proving Properties of R ule-Ba1sed .5'sleins

-in(the set-membership relation a E iv:

{}
it E it + u

if u E it then it E 1v + v

if u-0 v then if u E iv + v then it E tv.

For the set deletion function w - v we have

V 0 W- V
if u E iv-v then it E iv.

We include a general well-founded induction principle, described in the
next subsection, which applies to finite sets and finite-histories as well.

Properties of tuples, for reasoning about histories and about tuples of
ground terms, are also included but will not be presented here. Theories of
finite sets and tuples are described more fully in Manna and Waldinger [21].

Although it may seem pedantic, we must include axioms that tell us
that distinct function symbols correspond to distinct predicate symbols in
working memory. For example, red(s) and blue(t) cannot stand for the same
atom. This is expressed by the axiom

red(s)'$ blue(t).

We must provide such an axiom for each pair of function symbols corre-
sponding to predicate symbols in working memory.

We must also provide an axiom stating that if two terms are distinct,
they cannot be made identical by applying any of the predicate symbols
from the working memory; e.g., for the predicate symbol red, we have

if red(t1) = red(th) then t1 = t2.

A similar axiom is provided for each function symbol corresponding to a
predicate symbol from working memory.

5.3.3 Well-Founded Induction

Many proofs require use of an induction principle. We use well-founded in-
duction (also called Noetherian induction). This principle has the following
form.

To prove a sentence
(VIV)P[w]

42

Chapter 5. Proving Properties of Rule-Based Systeins

prove the inductive step

if (Vtv') [if w' -< w then P[w']]
then P[w]

Here - is a well-founded relation, that is, one that admits no infinite de-
creasing sequences

W1 >- W2 >- W3 >-

We provide- definitions of many known well-founded relations. For ex-
ample, the-proper subset relation is known to be well-founded over the finite
sets because there are no infinite sequences of finite sets

w D W2D w3 D ...

We also include as lemmas other properties of the proper subset relation,
e.g.,

if ut E tw then w - u C w.

Well-founded relations over the tuples are also provided.

5.4 Validation Conjectures

Many validation tasks may be phrased as conjectures within the* system
theory; if we can establish the validity of the conjecture in the theory, we
have carried out the validation task.

For example, suppose we wish to determine whether, for the given rule
system, big, red objects will be painted yellow. We may phrase this task as:

if red(t) E w]
big(t) E w A(Vwv, h, t)trhw

then yellow(t) E sys(h, w)

If we can prove this sentence in the system theory, we have shown that thie
system satisfies the condition.

Note that the sentence does not establish termination of the system, but
only that if a history does terminate, the condition will be satisfied. To show
that the system does always terminate, it suffices to establish the following
termination condition:

if applic(r, t, to) then apply(r, t, iv) - wv

43

Chapter .5. Proving Propert.ies of Rule-Based Systems

for some well4ounded relation -<. In other words, we show that each appli-
cable rule reduces the size of working memory with respect to some well-
founded relation. Because well-founded relations do not amit infinite de-
creasing sequences, this means we must ultimately reach a working memory
to which no rule is applicable, i.e., a. final working memory.

In our examples, we require the user to provide a well-founded relation
for the termination proof. For example, the user might define

(Vt) [if red(t) E tvi then r'ed(t) E 'w21
W1 -A W2 - A

(t') [red(t') E w2 A red(t') 0 wl]

In other words, with respect to -<, one working memory is less than another
if it has fewer red objects. This is well-founded because working memories
are finite.. (We could define this relationship in terms of the number of
red objects in working memory, but this would require reasoning about
nonnegative integers, as well as sets, in the proof.) A more ambitious effort,
which we have not yet attempted, would require the system to discover the
well-founded relation as part of the proof process.

If we fail to prove that all red, big objects will be painted yellow, we
may attempt to establish the opposite, namely, that some red, big objects
will not be painted yellow. This can be established by proving the negation
of the original conjecture, i.e., that

red(t) E w A
(3w, h, t) big(t) E w A

ter(h, w)A
yellow(t) € y~,w

Proving this conjecture will establish the falseness of the original condition.
If we restrict the proof to be sufficiently constructive, we may extract a
description of a case in which the condition fails to hold. In particular, we
obtain a description of an initial working memory, a terminating history,
and an object such that the object is initially big and red, but executing
the history will produce a final working memory in which the object is not
painted yellow.

Suppose we cannot prove termination and we suspect that our system
sometimes fails to terminate. To prove this, we must provide a description
of a possible infinite execution history, in the form of three functions, r,
t, and to, which compute the ith rule, instantiation, and working memory,

44

Chapter .5. Proving Properties of Rule-Based Systehis

respectively. These functions must satisfy the property

applic(-(i), t(i), w(i))A
apply(r(i), t(i), w(i)) = w(i + 1)

for all integers i > 1. We have not yet experimented with proving nonter-
mination.

If we want to establish that a particular rule, say Rule 1, can fire, we
may prove the conjecture

(3w, h, t)[hist(h, w) A applic(rulel, t, sys(h, w))].

If we restrict the proof to be sufficiently constructive, we may obtain
descriptions of the initial working memory to, history h, and instantiation t,
such that executing h in initial working memory w will produce a working
memory in which Rule I is applicable, with instantiation t. Proving the
negation of the above conjecture will establish that Rule 1 is redundant,
i.e., cannot be executed under any circumstances.

The notion of consistency depends on an application domain. Our rule
language does not include explicit negation, but it may include predicate
symbols that are understood to be mutually inconsistent. We may expect,
for example, that an object cannot be both red and blu6, or that the predi-
cate symbol negp is to be the complement of the predicate symbol p.

If we want to show that our system can never produce an object that is
simultaneously red and blue, we may attempt to prove

(Vh,'t) Eif hist(h,))]
then -, [red(t) E sys(h, w) A blue(t) E sys(h, w)

The above conjecture implies that an object cannot be both red and blue
at any stage of the computation. If we are only concerned with the final
state of the computation, we may prove

[i f t er (h) to)
(Vw, h, t) -,[red(t) E sys(h,w) blue(t) E sys(h,w)] "

If we can prove the negation of either of the above conjectures, we have
established that the system can produce an inconsistency, in either an in-
termediate state or a final state, respectively. Restricting th'. proofs to be
sufficiently constructive will enable us to extract a description of how the
inconsistency can occur.

45

Chapter 5. Proving Properties of Rutle-Based .S -steins

5.5 Example: The Billing Category System
To illustrate the formation of a. system theory, we adapt an example from

a standard expert-systems text (Brownston et al. [3]). The system is to
assign each of a fixed, finite pool of customers to a billing category, either
normal or priority, depending on the history of the customer. The rules of
the system are as follows:

Rule 1: good(x), not set(x) - good(x),set(),priority(x).

That is, if the category of a good customer has not been set, assign the
customer to the priority category.

Rule 2: bad(x), not set(x) -+ bad(x), set(x), norrnal(x).

That is, if the category of a bad customer has not been set, assign the
customer to the normal category.

Rule 3 : bad(x), not set(x),long(x) -- bad(x),set(x),long(x),priority(x).

That is, if the category of a bad but long-term customer has not been set,
assign the customer to the priority category. Note that, by the specificity
principle, Rule 3 is intended to supersede Rule 2 when both are applicable;
that is, Rule 2 is not meant to apply to long-term customers.

5.5.1 The Rule Axioms

These rules are represented by the following axioms in the system theory.

if applic(r,t, w) then r = rule 1 V r = rule2 V r = rule3.

In other words, the only rules that can be applicable to a given customer t
are Rule 1, Rule 2, or Rule 3.

Axioms for Rule 1:

applic(rulel, t, w)- good(t) E iv A set(t) t w

Note that because the rules have only one variable, we simplify the axioms
by using t, rather than (t), throughout.

if applic(rulel, t, w) then apply(rulel, t, tw) = w + set(t) + priority(t)

46

Chapter -5. Proving Propekties of Rule-Based Systems

Because the atom good(x) occurs on both sides of Rule 1, the corresponding
term good(t) is.neither deleted nor added by the axioni.

Axioms for Rule 2:

applic(rule2,t,w) bad(t) E w A long(t) w A sel(t) .tw

Note that we include in the applicability axiom for Rule 2 the condition,
implied by the specificity principle, that the rule should not be applied to
long-term customers.

if applic(rule2, t, w) then apply(rulde2, t, w) = w + set(t) + norrnal(t)

Axioms for Rule 3:

applic(rul3, t, w) = bad(t) E w A long(t) E w A set(t) 0. w

if applic(rule3, t, w) then apply(rule3, t, w) = w + set(t) + priority(t)

The other axioms of the system theory are the same from one system to
the next.

5.5.2 Conjecttires: A Scenario

Suppose we wish to determine whether a good customer will always be
placed in the priority category. Then we may conjecture

then priority(t) E sys(h, w)

In fact, we cannot prove the above conjecture. We can, however, prove its
negation

n ter(h, w)A

(3w, h, t) good(t) E wA[priority(t) .sys(h, io)

If we restrict the proof to be constructive, we may extract a description of
the initial working memory,

w: {good(t), set(t)}

and the history
h

47

Chapter-5. Proving Pro perdies of Rule-Based S),ystems

the-empty history. (The variable I is not instantiated (luring the proof, so
it can be replaced by any-ground term that denotes a customer.) In other
words, no rule is applicable to the initial working memory {good(), set(t)},
because customer t has been marked as if his billing category has already
been, set. Tierefore, the final working memory sys(h, w) is the same as the
initial working memory ?v, and priority(t) .w.

We attempt to refine our conjecture accordingly. We speculate that if a
good customer has no set billing category, he will ultimately be placed in
the priority category. We attempt to prove

if ter(h,w)
(Vw, h,t) then if good(t) E w A set(t) 0 wv

then priority(t) E sys(h, w)

Again we fail to prove this, but succeed in proving its negation. If the proof
is restricted to be constructive, we may extract the (inconsistent) initial
working memory

w: {bad(t),good(t)}

and the one-element history

h: ((rule2,t)).

This example has again defied our expectations. Because customer t is bad
as well as good (and not a long-term customer), Rule 2 can be applied,
producing the final working memory

sys(h, w) : {bad(t), good(t), set(t), normal(t)}.

In other words, good customer t has not been put into the priority category.
This scenario illustrates the pitfalls we may face in formulating a spec-

ification for a rule-based system (or any system). It also illustrates how a
proof system may help us break through some preconceptions. With further
experimentation, we may attempt to formulate and prove a full specification
for a rule system, which characterizes its intended behavior. For the billing
category system, we propose the following conjecture:

[good(t) E wvbad(t) E w]A

if (Vt) set(t) g wA
priority(t) .ivA
normal(t) .iv

48

Chapt er 5. Proving Properties of Rule-Based Systems

if ter(h, w)
then (priority(t) E sys(h, wv) good(t)E to V long(t) E w]A

[normal(f)E sys(h, w) bad(t) E IV A tong(t) ¢ v]A
then (Vh) set(t) E sys(hi 1v)A

[good(t) E sys(h, IV)- good(t) E tv]A
[bad(t) E sys(h, w) = bad(t) E wJA
[long(t) E sys(h, w) - long(t) E w]

for all customers t and working memories w. In other words, We suppose that
initiallyeach customer is either good or bad, but not both (Y is exclusive
o). Initially no customer has had his billing category set, and no customer'
is in either normal or priority category. Then for each terminating history,
we require that the customers in the final priority category be those that
are initially good customers or long-term customers. Qustomers in the final
normal category must be those that are initially bad customers and not
long-term customers. Every customer must have his final billing category
set. Furthermore, we may expect that customers in the final good-customer,
bad-customer and long-term customer categories are the same as those that
were in those categories initially.

The above conjecture relates the initial and final working memories. For
the proof to succeed, we must generalize the theorein to relate the inter-
mediate and final working memories. The generalized conjecture implies
the above conjecture as a special case. We have not yet proved the above
conjecture.

Termination of the system must be proved separately, by establishing
the usual termination condition

[if applic(r, t,w) 1
then apply(r, t, IV) -< w

for some well-founded relation -<. In this case, the well-founded relation -<

may be defined by

(Vt) [if set(t) E 'V2 then set(t) E tol1
IV1 -< Io2 A

(3)[set(t') E wo, A set(t') . w2]

In other words, with respect to -<, one working memory is less than
another if it has more customers with set billing category. This is well-
founded because there are only a finite number of customers.

19

hIjapter 5. lroving' Properties of Riue-Based Systems

5.6 The SNARK System

To-provevalidation conjectures, a. theorem prover requires an untsual coi-
bination of features. In particular, it must

' Prove sentences in full first-order logic.

e Deal expeditiously with equality and ordering relations.

* Prove theorems by mathematical induction.

* Handle finite sets and tuples.

* Restrict proofs to be sufficiently constructive to allow information ex-
traction when necessary.

* Prove simple theorems without human assistance.

While some existing theorem provers excel in certain of these areas, they
are typically deficient in others. The Argonne system [32], for example, is
proficient at full first-order logic with equality, but has no facilities for proof
by induction. The Boyer-Moore theorem prover [2] specializes in proof by
induction, but does not allow full first-order quantification. The Nuprl sys-
tern [8] is certainly expressive enough-it allows full quantification and proof
by induction-but is not geared to finding proofs automatically. Further-
more, it relies entirely on a constructive logic that may prove cumbersome
when no information needs to be extracted from the proof.

For these reasons, we have been developing a new theorem prover, SNARK,
for application in software engineering and artificial intelligence. SNARK is
especially appropriate for the validation of rule-based systems.

SNARK operates fully automatically and uses an agenda to order in-
ference operations. Similarly to the Argonne system, SNARK attempts to
compute the deductive closure of a set of formulas. The user selects the
inference operations and starting formulas to be used. Agenda elements are
formulas in the set of support to be operated upon by all selected inference
rules, and are ordered by symbol count.

The most important inference operations available in the system are
binary resolution and paramodulation. These rules allow SNARK to deal
with predicate logic with equality, which underlies the system theory for rule-
based systems. We have used extended versions of these inference rules that
are applicable to nonclausal formulas as well as clauses. Hyperresolution can

50

Chapter 5. Proving Properties of Rule-Based Systems

be simulated by, control restictions on the use of binary resolvents. Both
clausal and nonclausal subsumption are available to eliminate redundant
formulas.

Formulas can be simplified by user-given or derived equalities or equiv-
alences. Innermost or outermost simplification strategies can be -specified.
Derived equalities can be oriented automatically by Knuth-Bendix or recur-
sive decomposition simplification orderings. Truth-functional simplification
is accomplished by rewriting rules, which makes it easy to add new connec-
tives and their simplification rules.

SNARK can use either nonclausal formulas or the more restrictive clauses.
if clauses are to be used, SNARK can automatically translate more general
formulas to clauses. Even if clauses are primarily-used, translation of formu-
las to clauses is not required .to be done only at the beginning of the proof.
Rewrites can specify that an atomic subformula of a formula be rewritten to
a formula; the result of rewriting may be a nonclausal formula that is later
simplified to clause form. For example, the rewrite

uE w +vEu=vVuEw

would result in the clause a 0 s+xVC being rewritten to -(a = xVa E s)VC,
which could.be replaced by two clauses.

Efficient formula- and term-indexing methods-a choice of path index-
ing or discrimination-tree indexing-are used to efficiently retrieve the rel-
evant formulas or terms for inference, subsumption, and simplification op-
erations. Efficient indexing is essential for solving difficult problems that
require derivation of a large number of results.

SNARK uses sorted logic to efficiently represent the information that
certain classes cf objects being manipulated are disjoint. In the examples
of this chapter, several sorts are used: rules, working memories, working
memory elements, customers, history lists, and the pairs that are history
list members.

SNARK supports the use of special unification (and subsumption and
equality) algorithms. Associative-commutative subsumption is widely used
for truth-functional simplification, and commutative matching is used to
efficiently implement symmetry of the equality relation.

Although at an early stage of development, SNARK has already been
useful in proving properties of rule-based systems, including those indicated
in the scenario (Section 5.5.2).

51

Cliaper 5. Proviig)'rolor.ies of 1?de-Jased Systems

5..7 Summary and Plans

Our work suggeststhat dCductive methods are appropriate to support test-
ing and other validation tasks, besides verification, for rule-based systems.
Preliminary results in applying the new deduction system SNARlK to sami
ple rule-based systems have been promising. By restricting the system to
be sufficiently constructive, we have been able to extract information other
than simple yes/no answers from p'oofs. We have found that a method for
formulating specifications by proposing a series of conjectures is appropriate
to rule-based systems.

We intend to developz the system theory to apply to more realistic rule
languages and to extend SNARK to more complex rule systems and more
sophisticated properties and conjectures. The extension will be carried out
by introducing inference rules targeted to the application (e.g., rules for rea-
soning about sets and ordering relations), strategic deduction (e.g., special
treatment for inductive proofs), interactive controls, and parallel search for
proofs.

52

I,

Bibliography

41] Lee Becker, Peter Green, R. J. Duckworth, Jayant Bhatnagar, and
Adam Pease. Evidence flow graphs for VVT. In Preliminary Pro-
ceedings IJCAI-89 Workshop on 'Verification, Validation and Testing
of KnOwledge-Based Systems, 1989. Detroit, Mi.

[2] R.S. Boyer and J S. Moore. A Computational Logic. Academic Press,
New York, 1979.

[3] L. Brownston, R. Farrell, E. Kant, and N. Martin. Programming Ex-
pert Systems in OPS5: An Introduction to Rule-Based Programming.
Addison-Wesley, Reading, MA, 1985.

[4] Chin Chang and Rolf Stachowitz. Testiig expert systems. In Pro-
ceedings of the Space Operations Automation and Robotics (SOAR-88)
Workshop, 1988. Dayton, OH.

[5] Chin Chang, Rolf Stachowitz, and J.B. Combs. Testing integrated
knowledge-based systems. In IEEE International Workshop on Tools
for AI, 1989. Fairfax, Virginia.

[6] Lori Clarke, Andy Podgurski, Debra Richardson, and Steven Zeil. A
formal evaluation of data flow path selection criteria. IEEE Transac-
tions on Software Engineering, 15(11):1318-1332, November 1989.

[7] William F. Clocksin and Christopher S. Mellish. Programming in Pro-
log. Springer-Verlag, New York, NY, 1981.

[8] R. Constable et al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice Hall, Englewood Cliffs, NJ, 1986.

[91 Joe W. Duran and Simeon C. Ntafos. An evaluation of random testing.
IEEE Transactions on Software Engineering, SE-10(4):438-443, April
1984.

53

Bibliogeraphy

[10] -Charles L. Porgy. OPS5 user's manual. Technical Report CMlU-CS-
81-i35, Depi'tment of Computer Science, Carnegie-Mellon University,
Pittsburgh, PA, July 1981.

[1'] Joseph C. Giarratano. CLIPS User's Guide. Artificial Intelligence

Center, Lyndon B. Johnson Space Center, .June 1988. Version 4.2 of
CLIPS;

[12] Allen Ginsberg. A new approach to checking knowledge bases for incon-
sistency and redundancy. In Proceedings, Third Annual Expert Systems
in Goveriment Symposium, pages 102-111, Washington, DC, October
1987. IEEE Computer Society.

[13] Allen Ginsberg. Knowledge-base reduction: A new approach to check-
ing knowledge-bases for inconsistency and redundancy. In Proceedings,
AAAI 88 (Volume 2), pages 585-589, Saint Paul, MN, August 1988.

[14 Joseph A. Goguen and Timothy Winkler. Introducing OBJ. Techni-
cal Report SRI-CSL-88-9, Computer Science Laboratory, SRI Interna-
tional, Menlo Park, CA, August 1988.

[15] D.C. Ince. The automatic generation of test data. Computer Journal,
30(1):63-69i February 1987.

[16] D.C. Ince and S. Hekmatpour. An empirical evaluation of random
testing. Computer Journal, 29(4):380, August 1986.

[17] James Kiper. Structural testing of rule-based expert systems. In Pre-
liminary Proceedings IJCAI-89 Workshop on Verification, Validation
and Testing of Knowledge-Based Systems, 1989. Detroit, MI.

[18] D.E. Knuth and P.B. Bendix. Simple word problems in universal alge-
bras. In J. Leech, editor, Computational Problems in Abstract Algebra,
pages 263-293. Pergamon, New York, NY, 1970.

[19] J. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin,
West Germany, 1984.

[20] Zohar Manna and Richard Waldinger. A deductive approach to pro-
gram synthesis. ACM Transactions on Programming Languages and
Systems, 2:90-121, 1980.

54

Bibliography

[2i] ZoharManna and Richard'Waldinger. The Logical Basis for Computer
Programming, volume 1: Deductive Reasoning. Addison-Wesley, 1985.

[22] C.K. Mohan. Priority rewriting:- semantics, confluence, and condition-
als. In Proceedings of the Third International Conference on Rewriting
Techniques and Applications, pages 278-291, Chapel Hill, NC, 1989.

[23] Tin A. Nguyen, Walton A. Perkins, Thomas J. Laffey, and Deanne Pec-
ora. Knowledge base verification. AI Magazine, 8(2):65-79, Summer
1987.

[24] Simeon Ntafos. On required element testing. IEEE Transactions on
Software Engineering, SE-10(6):795-803, November 1984.

[25] Thomas J. Ostrand and Marc J. Balcer. The category-partition method
for specifying and generating functional tests. Communications of the
ACM, 31(6):676-686, June 1988.

[26] Sandra Rapps and Elaine J. Weyuker. Selecting software test data using
data flow information. IEEE Transactions on Software Engineering,
SE-11(4):367-375, April 1985.

[27] John Rushby. Quality measures and assurance for AI software. Con- - " "

tractor report 4187, NASA, October 1988.

[28] Rolf Stachowitz, Jacqueline Combs, and Chin Chang. Valida-
tion of knowledge-based systems. In Proceedings of the Second
AIAA/NASA/USAF Symposium on Automation, Robotics and Ad-
vanced Computing for the National Space Program, 1987. Arlington,
VA.

[29] Motoi Suwa, A. Carlisle Scott, and Edward H. Shortliffe. An approach
to verifying completeness and consistency in a rule-based expert system.
AI Magazine, 3(4):16-21, Fall 1982.

[30] S.A. Vere. Relational production systems. Artificial Intelligence,
8(1):47-68, February 1977.

[31] Elaine Weyuker and Thomas Ostrand. Theories of program testing
and the application of revealing subdomains. IEEE Transactions on
Software Engineering, SE-6(3):236-246, May 1980.

55

Bib1lwogrIvIP11

[32] L. Wos, R1. Overbeck, E. Lusk, and J1. Boyle. Aulomaled Reasoning.
Prejilice Hall, E1.nglewood Cliffs, N.], 1984.

56

